On the determination of elastic moduli of cells by AFM based indentation

نویسندگان

  • Yue Ding
  • Guang-Kui Xu
  • Gang-Feng Wang
چکیده

The atomic force microscopy (AFM) has been widely used to measure the mechanical properties of biological cells through indentations. In most of existing studies, the cell is supposed to be linear elastic within the small strain regime when analyzing the AFM indentation data. However, in experimental situations, the roles of large deformation and surface tension of cells should be taken into consideration. Here, we use the neo-Hookean model to describe the hyperelastic behavior of cells and investigate the influence of surface tension through finite element simulations. At large deformation, a correction factor, depending on the geometric ratio of indenter radius to cell radius, is introduced to modify the force-indent depth relation of classical Hertzian model. Moreover, when the indent depth is comparable with an intrinsic length defined as the ratio of surface tension to elastic modulus, the surface tension evidently affects the indentation response, indicating an overestimation of elastic modulus by the Hertzian model. The dimensionless-analysis-based theoretical predictions, which include both large deformation and surface tension, are in good agreement with our finite element simulation data. This study provides a novel method to more accurately measure the mechanical properties of biological cells and soft materials in AFM indentation experiments.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effect of Stress-Fiber Inclusion on the Local Stiffness of Cell Cytoskeleton Probed by AFM Indentation: Insights from a Discrete Network Model

In this paper, we analyze the effect of stress-fiber inclusion on the stiffness of an actin random network. To do this, use a discrete random network model to analyze the elastic response of this system in terms of apparent Young’s modulus. First, we showed that for a flat-ended cylindrical AFM indenter the total indentation force has a linear relation with the indentation depth and the indente...

متن کامل

Measuring the elastic properties of living cells with atomic force microscopy indentation.

Atomic force microscopy (AFM) is a powerful and versatile tool for probing the mechanical properties of biological samples. This chapter describes the procedures for using AFM indentation to measure the elastic moduli of living cells. We include step-by-step instructions for cantilever calibration and data acquisition using a combined AFM/optical microscope system, as well as a detailed protoco...

متن کامل

Adhesive and Nonadhesive, Large Strain AFM Indentation of Rubber-like Materials

Atomic force microscopy is an established technique for probing the local elastic properties of materials at submicron scales. In some cases, linear elastic contact theories based on Hertzian and adhesive contact mechanics suffice to model the indentation process. However, at the large strains that are common in many nanoindentation experiments, the linear models become invalid. A force-indenta...

متن کامل

Evaluation of biological cell properties using dynamic indentation measurement.

Viscoelastic mechanical properties of biological cells are commonly measured using atomic force microscope (AFM) dynamic indentation with spherical tips. A semiempirical analysis based on numerical simulation is built to determine the cell mechanical properties. It is shown that the existing analysis cannot reflect the accurate values of cell elastic/dynamic modulus due to the effects of substr...

متن کامل

Molecular Dynamics Investigation of The Elastic Constants and Moduli of Single Walled Carbon Nanotubes

Determination of the mechanical properties of carbon nanotubes is an essential step in their applications from macroscopic composites to nano-electro-mechanical systems. In this paper we report the results of a series of molecular dynamics simulations carried out to predict the elastic constants, i.e. the elements of the stiffness tensor, and the elastic moduli, namely the Young’s and shear mod...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2017